(2012•江西)已知数列{an}的前n项和Sn=kcn-k(其中c,k为常数),且a2=4,a6=8a3.(1)求an;(2)求数列{nan}的前n项和Tn.

问题描述:

(2012•江西)已知数列{an}的前n项和Sn=kcn-k(其中c,k为常数),且a2=4,a6=8a3
(1)求an
(2)求数列{nan}的前n项和Tn

(1)由Sn=kcn-k,得an=sn-sn-1=kcn-kcn-1;   (n≥2),
由a2=4,a6=8a3.得kc(c-1)=4,kc5(c-1)=8kc2(c-1),解得

c=2
k=2

所以a1=s1=2;
an=sn-sn-1=kcn-kcn-1=2n,(n≥2),
于是an=2n
(2):∵nan=n•2n
∴Tn=2+2•22+3•23+…+n•2n
  2Tn=22+2•23+3•24+…+(n-1)•2n+n•2n+1
∴-Tn=2+22+23…+2n-n•2n+1=
2(1−2n)
1−2
-n•2n+1=-2+2n+1-n•2n+1
即:Tn=(n-1)•2n+1+2.
答案解析:(1)先根据前n项和求出数列的通项表达式;再结合a2=4,a6=8a3求出c,k,即可求出数列的通项;
(2)直接利用错位相减法求和即可.
考试点:数列的求和;等比数列的通项公式.
知识点:本题主要考察数列求和的错位相减法.数列求和的错位相减法适用于一等差数列乘一等比数列组合而成的新数列.数列求和的错位相减法也是这几年高考的常考点.