求反常积分∫ln(sinx)dx,上限是π/2,下限是0,希望给出过程,多谢
问题描述:
求反常积分∫ln(sinx)dx,上限是π/2,下限是0,希望给出过程,多谢
答
∫ln(sinx)dx上限是π/2,下限是0,将x都改成π/2-x;得
∫ln(sinx)dx上限是π/2,下限是0 = -∫ln(cosx)dx上限是0,下限是π/2
= ∫ln(cosx)dx上限是π/2,下限是0;(*)
同理(* )式中再将x都变成x-π/2,得:
∫ln(sinx)dx上限是π/2,下限是0 =∫ln(sinx)dx上限是π,下限是 π/2;
于是∫ln(sinx)dx上限是π/2,下限是0 =二分之一倍的 ∫ln(sinx)∫ln(sinx)dx上限是π/2,下限是0
∫ln(sinx)dx上限是π/2,下限是0 + ∫ln(cosx)dx上限是π/2,下限是0 +∫ln(2)dx上限是π/2,下限是0
=∫ln(2*sinx*cosx)dx上限是π/2,下限是0
=∫ln(sin2x)dx上限是π/2,下限是0
=(1/2)*∫ln(sinx)dx上限是π,下限是0
=∫ln(sinx)dx上限是π/2,下限是0
所以可得:
∫ln(sinx)dx上限是π/2,下限是0=- ∫ln(2)dx上限是π/2,下限是0
=-π*ln(2)/2