过抛物线y^2=2px 焦点F的弦AB,点A.B在准线上的投影为A1,B1求角A1FB1

问题描述:

过抛物线y^2=2px 焦点F的弦AB,点A.B在准线上的投影为A1,B1求角A1FB1

∠A1FB1=90度.由抛物线的定义,知|AA1|=|AF|,|BB1|=|BF|,
∴∠AA1F=∠AFA1,∠BB1F=∠BFB1.设x轴交准线于点K.∵A1A‖B1B‖x轴,
∴∠AA1F=∠A1FK,∠BB1F=∠B1FK,
∴∠A1FB1=∠A1FK+∠B1FK=(∠AFA1+∠A1FK+∠B1FK+∠BFB1)/2=180°/2=90°.