一道高中数学题(关于向量)若o是三角形ABC内一点,OA+OB+OC=0,求证O为三角形ABC的重心.(OA,OB,OC都是向量)
一道高中数学题(关于向量)
若o是三角形ABC内一点,OA+OB+OC=0,求证O为三角形ABC的重心.
(OA,OB,OC都是向量)
取AB中点为D,OA+OB=2 OD,(平行四边形对角线互相平分)又因为OA+OB+OC=0,所以OC=2 OD且共线,同理找BC中点为S,AC中点为W,OA=2 OS且共线,OB=2 OW且共线。D,S,W分别为AB,BC,AC中点,所以O为三角形重心。
取BC中点D,连结并延长OD至E,使DE=OD
于是四边形BOCE是平行四边形
所以向量OB=向量CE
所以向量OB+向量OC=向量CE+向量OC=向量OE
而由向量OA+向量OB+向量OC=0得
向量OB+向量OC=-向量OA=向量AO
所以向量AO和向量OE共线
所以A、O、E三点共线
而D在OE上
所以A、O、D三点共线
而点D又是BC中点
所以AD(即AO)是三角形ABC中BC边中线
同理可证BO是AC边中线,CO是AB边中线
所以点O是三角形ABC的重心
取BC中点D,连结并延长OD至E,使DE=OD
于是四边形BOCE是平行四边形
所以向量OB=向量CE
所以向量OB+向量OC=向量CE+向量OC=向量OE
而由向量OA+向量OB+向量OC=0得
向量OB+向量OC=-向量OA=向量AO
所以向量AO和向量OE共线
所以A、O、E三点共线
而D在OE上
所以A、O、D三点共线
而点D又是BC中点
所以AD(即AO)是三角形ABC中BC边中线
同理可证BO是AC边中线,CO是AB边中线
所以点O是三角形ABC的重心
取AB中点为D,OA+OB=2 OD,(平行四边形对角线互相平分)又因为OA+OB+OC=0,所以OC=2 OD且共线,同理找BC中点为S,AC中点为W,OA=2 OS且共线,OB=2 OW且共线.D,S,W分别为AB,BC,AC中点,所以O为三角形重心.
谢谢~