已知x^2-yz=y^2-zx=z^2-xy,求证x=y=z或x+y+z=0
问题描述:
已知x^2-yz=y^2-zx=z^2-xy,求证x=y=z或x+y+z=0
答
证明:因为x^2-yz=y^2-zx=z^2-xy,所以x^2-yz=y^2-zx得x^2-y^2+zx-yz=(x+y)*(x-y)+z(x-y)=0
即x-y=0或x+y+z=0,同理y^2-zx=z^2-xy得到y-z=0或x+y+z=0