已知cosα=5/13,求(2sinα-3cosα)/(4sinα+9cosα)=?

问题描述:

已知cosα=5/13,求(2sinα-3cosα)/(4sinα+9cosα)=?

cosα=5/13
sinα=±12/13
当cosα=5/13,sinα=12/13时
(2sinα-3cosα)/(4sinα+9cosα)
=(2*12/13-3*5/13)/(4*12/13+9*5/13)
=(24/13-15/13)/(48/13+45/13)
=(9/13)/(93/13)
=9/13*13/93
=9/93
=3/31
当cosα=5/13,sinα=-12/13时
(2sinα-3cosα)/(4sinα+9cosα)
=(2*-12/13-3*5/13)/(4*-12/13+9*5/13)
=(-24/13-15/13)/(-48/13+45/13)
=(-39/13)/(-3/13)
=39/13*13/3
=39/3
=13