用数学归纳法证明,若f(n)=1+12+13+…+1n,则n+f(1)+f(2)+…+f(n-1)=n•f(n)(n≥2,且n∈N+).

问题描述:

用数学归纳法证明,若f(n)=1+

1
2
+
1
3
+…+
1
n
,则n+f(1)+f(2)+…+f(n-1)=n•f(n)(n≥2,且n∈N+).

(1)当n=2时,左边=2+f(1)=2+1=3,
右边=2•f(2)=2×(1+

1
2
)=3,左边=右边,等式成立.ks5u
(2)假设n=k时等式成立,即
k+f(1)+f(2)+…+f(k-1)=kf(k).
由已知条件可得f(k+1)=f(k)+
1
k+1

右边=(k+1)•f(k+1)(先写出右边,便于左边对照变形).
当n=k+1时,左边=(k+1)+f(1)+f(2)+…+f(k-1)+f(k)
=[k+f(1)+f(2)+…+f(k-1)]+1+f(k)(凑成归纳假设)
=kf(k)+1+f(k)(利用假设)
=(k+1)•f(k)+1
=(k+1)•[f(k+1)-
1
k+1
]+1
=(k+1)•f(k+1)=右边.
∴当n=k+1时,等式也成立.
由(1)(2)可知,对一切n≥2的正整数等式都成立.
答案解析:应用数学归纳法证明问题,①验证n=1时命题成立;②假设n=k时,命题成立,从假设出发,经过推理论证,证明n=k+1时也成立,从而证明命题正确.
考试点:数学归纳法.
知识点:考查数学归纳法证明有关正整数命题的方法步骤,特别是(2)是关键,是核心,也是数学归纳法证明命题的难点所在,属中档题.