定义在非零实数集上的函数f(x)满足f(xy)=f(x)+f(y),且f(x)是区间(0,+∞)上的递增函数解关于x的不等式:f(2)+f(x-1/2)≤0​​.

问题描述:

定义在非零实数集上的函数f(x)满足f(xy)=f(x)+f(y),且f(x)是区间(0,+∞)上的递增函数
解关于x的不等式:f(2)+f(x-1/2)≤0
​​

取 x=y=1 可得 f(1)=f(1)+f(1) ,解得 f(1)=0 ,
取 x=y= -1 ,可得 f(1)=2f(-1) ,因此 f(-1)=0 ,
取 y= -1 得 f(-x)=f(x)+f(-1)=f(x) ,所以函数为偶函数,
因此,由 f(x) 在(0,+∞)上为增函数可得,f(x) 在(-∞,0)上为减函数,
所以,由 f(2)+f(x-1/2)