已知函数y=f(X)在[0,1]连续,在(0,1)可导,f(0)=0,f(1)=1,证存在a属于(0,1)中使f(a)=1-a

问题描述:

已知函数y=f(X)在[0,1]连续,在(0,1)可导,f(0)=0,f(1)=1,证存在a属于(0,1)中使f(a)=1-a

闭区间上连续函数介值定理可证:
构造函数g(x)=f(x)+x,则g(x)在[0,1]连续;g(0)=0,g(1)=2;故必然存在a属于(0,1),使得g(a)=1,即f(a)=1-a.