如图,抛物线y=-1/2x2+根2/2x+2与X交于A,B两点,与y轴交于点C,求A,B.C三点的坐标
问题描述:
如图,抛物线y=-1/2x2+根2/2x+2与X交于A,B两点,与y轴交于点C,求A,B.C三点的坐标
答
令y=0,求AB两点的横坐标:
-1/2x2+根2/2x+2=0
x^2-根号2x-4=0
(x-根号2/2)^2=4-1/4=15/4
x-根号2/2=±根号15/2
x1=(根号2-根号15)/2
x2=(根号2+根号15)/2
即:A((根号2-根号15)/2,0),B((根号2+根号15)/2,0)
令x=0,求C点坐标:
y=-1/2*0+根2/2*0+2=2
即:C(0,2)
答
令x=0,y=2.,那么点C(0,2)
令y=0,解方程0==-1/2x2+跟2/2x+2
得X1=2*跟2,X2=-跟2.
所以A(X1,0) B(X2,0)
答
抛物线y=-1/2x2+根2/2x+2=-1/2(x^2-根2x-1)与y轴交点,即x=0,所以y=2,即C点(0,2)与x轴交点,即y=0,所以有-1/2(x^2-根2x-4)=0即x^2-根2x-4=0x^2-根2x+1/2-9/2=0(x-跟2/2)^2=9/2x-跟2/2=3跟2/2或x-跟2/2=-3跟2/2x=2...