已知如图:△ABC中,AB=AC,BE=CD,BD=CF,则∠EDF=(  ) A.2∠A B.90°-2∠A C.90°-∠A D.90°−12∠A

问题描述:

已知如图:△ABC中,AB=AC,BE=CD,BD=CF,则∠EDF=(  )
A. 2∠A
B. 90°-2∠A
C. 90°-∠A
D. 90°−

1
2
∠A

∵AB=AC,
∴∠B=∠C,
∵BD=CF,BE=CD
∴△BDE≌△CFD,
∴∠BDE=∠CFD,
∠EDF=180°-(∠BDE+∠CDF)=180°-(∠CFD+∠CDF)=180°-(180°-∠C)=∠C,
∵∠A+∠B+∠C=180°.
∴∠A+2∠EDF=180°,
∴∠EDF=90°−

1
2
∠A.
故选D.