( x^2+y^2)dx=2xydy判断此微分方程的类型

问题描述:

( x^2+y^2)dx=2xydy判断此微分方程的类型

应该是可分离变量的吧
两端同除以x^2得
(1+(y/x)^2)dx=2y/xdy
令y/x=u
y=ux
y'=u'x+u
上式变为(1+u^2)=2u(u'x+u)
整 理
1+u^2=2u^2+2uu'x
1-u^2=2uu'x
dx/x=2u/(1-u^2)du
lnx=-ln(1-u^2)+C1
x=C/(1-u^2)