设f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0,求证:a>0且-2<ba<-1.

问题描述:

设f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0,求证:a>0且-2<

b
a
<-1.


答案解析:先将f(0)>0,f(1)>0,利用函数式中的a,b,c进行表示,再结合等式关系利用不等式的基本性质即可得到a和

a
b
的范围即可.
考试点:不等关系与不等式.
知识点:本题主要考查二次函数的基本性质与不等式的应用等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.