在三角形ABC中,已知sin(A+B)=0.6,sin(A-B)=0.2,且AB=3,求三角形ABC的面积.

问题描述:

在三角形ABC中,已知sin(A+B)=0.6,sin(A-B)=0.2,且AB=3,求三角形ABC的面积.

sin(A+B)=sinAcosB+sinBcosA=3/5...(1)
sin(A-B)=sinAcosB-sinBcosA=1/5...(2)
(1)=3*(2)
sinAcosB+sinBcosA=3sinAcosB-3sinBcosA
2sinBcosA=sinAcosB
tanA/tanB =2.(3)
sin(A+B)=3/5,所以sinC=3/5,cosC=4/5,tanC=3/4,所以tan(A+B)=-3/4=(tanA+tanB)/(1-tanAtanB),代入(3)式
所以tanA=2+根号6,tanB =1+根号6/2
设高为h,画图知:AB=h/tanA+h/tanB
所以h=2tanB*AB/3=2+根号6
面积S=1/2AB*h=1/2*3*(2+根6)=3/2(2+根6)