已知f(x)是定义在(-2,2)上的减函数,并且f(m-1)-f(1-2m)>0,则实数m的取值范围为______.

问题描述:

已知f(x)是定义在(-2,2)上的减函数,并且f(m-1)-f(1-2m)>0,则实数m的取值范围为______.

由题意,不等式f(m-1)-f(1-2m)>0可变为f(m-1)>f(1-2m)
又f(x)是定义在(-2,2)上的减函数

−2<m−1<2
−2<1−2m<2
m−1<1−2m
,解之得
1
2
<m<
2
3

故答案为
1
2
<m<
2
3

答案解析:由题设条件知,可先将不等式f(m-1)-f(1-2m)>0可变为f(m-1)>f(1-2m),再利用函数是减函数的性质将此抽象不等式转化为关于m的不等式组,解不等式组即可得到m的取值范围.
考试点:函数单调性的性质.
知识点:本题函数单调性的性质,对不等式进行移项,方便使用函数的单调性转化是解题的关键,本题考查了转化的思想及变形的能力.