1/2+1/6+1/12+1/20+1/30+……+1/90=?
问题描述:
1/2+1/6+1/12+1/20+1/30+……+1/90=?
答
由于1/n(n+1)=1/n-1/(n+1)
所以原式
=1/(1*2)+1/(2*3)+...+1/(9*10)
=(1-1/2)+(1/2-1/3)+...+(1/9-1/10)
=1-1/10
=9/10