已知向量a=(2cosx,-2),b=(cosx,12),f(x)=a•b,x∈R,则f(x)是( ) A.最小正周期为π的偶函数 B.最小正周期为π的奇函数 C.最小正周期为π2的偶函数 D.最小正周期为π2的奇函数
问题描述:
已知向量
=(2cosx,-2),a
=(cosx,b
),f(x)=1 2
•a
,x∈R,则f(x)是( )b
A. 最小正周期为π的偶函数
B. 最小正周期为π的奇函数
C. 最小正周期为
的偶函数π 2
D. 最小正周期为
的奇函数 π 2
答
∵f(x)=
•a
=2cos2x-1=cos2x,∴f(-x)=cos(-2x)=cos2x=f(x)b
∴函数f(x)为最小正周期为
=π的偶函数2π 2
故选 A