已知:BD、AD分别是△ABC的内角、外角的平分线,且相交于点D(1)若△ABC是等边三角形(如图1),求∠D的度数;(2)若△ABC是任意三角形(如图2),求证:∠C=2∠D.

问题描述:

已知:BD、AD分别是△ABC的内角、外角的平分线,且相交于点D

(1)若△ABC是等边三角形(如图1),求∠D的度数;
(2)若△ABC是任意三角形(如图2),求证:∠C=2∠D.

(1)∵BD、AD分别是△ABC的内角、外角的平分线,△ABC是等边三角形,∴∠1=∠2=60°,∠3=∠4=30°,∠BAC=60°,∴∠D=180°-30°-60°-60°=30°;(2)证明:∵BD、AD分别是△ABC的内角、外角的平分线,∴∠1=∠...
答案解析:(1)利用角平分线的性质以及等边三角形的性质得出∠1=∠2=60°,∠3=∠4=30°,∠BAC=60°,求出∠D的度数即可;
(2)利用角平分线的性质以及外角的性质得出即可.
考试点:三角形内角和定理;三角形的外角性质;等边三角形的性质.
知识点:此题主要考查了三角形外角形的性质和角平分线的性质以及三角形内角和定理,熟练利用三角形角平分线的性质得出是解题关键.