若定义在[-2010,2010]上的函数f(x)满足:对任意x1,x2∈[-2010,2010]有f(x1+x2)=f(x1)+f(x2)-2009,且x>0时有f(x)>2009,f(x)的最大值、最小值分别为M、N,则M+N=(  )

问题描述:

若定义在[-2010,2010]上的函数f(x)满足:对任意x1,x2∈[-2010,2010]有f(x1+x2)=f(x1)+f(x2)-2009,且x>0时有f(x)>2009,f(x)的最大值、最小值分别为M、N,则M+N=(  )
A. 2009
B. 2010
C. 4020
D. 4018

令g(x)=f(x)-2009,则由已知对任意x1,x2∈[-2010,2010]有f(x1+x2)=f(x1)+f(x2)-2009,
f(x1+x2)-2009=[f(x1)-2009]+[f(x2)-2009],
可得g(x1+x2)=g(x1)+g(x2)且 x>0时,g(x)>0
令x1=x2=0可得g(0)=0
 令x1=x,x2=-x,则可得g(0)=g(-x)+g(x)=0,则 g(-x)=-g(x),所以 g(x)是奇函数
若 g(x) 最大值为m,则最小值为-m
因此,由f(x)=g(x)+2009 得 f(x) 最大值为m+2009,最小值为-m+2009,
所以 M+N=m+2009+(-m)+2009=4018
故选D