an=2^(n-1),令bn=lna(3n+1)(3n+1为底数),n=1,2,···,求数列{bn}的前n项和Tn
问题描述:
an=2^(n-1),令bn=lna(3n+1)(3n+1为底数),n=1,2,···,求数列{bn}的前n项和Tn
答
由an=2^(n-1)得
a(3n+1)=2^(3n)
所以bn=lna(3n+1)=ln2^(3n)=3nln2
Tn=b1+b2+.....bn
=3ln2+3*2ln2+3*3ln2+....+3nln2
=3(1+2+3+...+n)ln2
=(3/2)n(n+1)ln2
答
an=2^(n-1)bn=lna(3n+1)=ln2^(3n)b(n-1)=lna(3n-2)=ln2^(3n-3)=ln2^[3(n-1)]b(n-2)=lna(3n-5)=ln2^(3n-6)=ln2^[3(n-2)]...b2=lna7=ln2^(3*2)b1=lna4=ln2^(3*1)则 b1+b2+.+bn=ln2^(3*1+3*2+...+3*n)=ln2^[3*(1+n)...