多项式 x^2+4y^2+2x-4y+7的最小值
多项式 x^2+4y^2+2x-4y+7的最小值
x^2+4y^2+2x-4y+7
=(x^2+2x+1)+(4y^2-4y+1)+5
=(x+1)^2+(2y-1)^2+5
>=5
当x+1=0,2y-1=0取等
x=-1,y=1/2
最小值是5
原式=(x^2+2x+1)+(4y^2-4y+1)+5
-------------=(X+1)^2+(2Y-1)^2+5
所以:原式的最小值为:5(此时,X=-1,y=1/2)
x^2+4y^2+2x-4y+7=(x+1)^2+(2y-1)^2+5
在实属范围内,前两个平方项为0时,
即x=-1,y=1/2时,有最小值5
大家都很厉害
x^2+4y^2+2x-4y+7
=(x²+2x+1)+(4y²-4y+1)+5
=(x+1)²+(2y-1)²+5
因为(x+1)²≥0,(2y-1)²≥0
所以当x=-1,y=1/2时,多项式 x^2+4y^2+2x-4y+7的最小值是5
这怎么求
有问题
x^2+4y^2+2x-4y+7
=(x^2+2x+1)+(4y^2+4y+1)+5
=(x+1)^2+(2y+1)^2+5
两个平方项最小值为0
所以多项式最小值是 5
x^2+4y^2+2x-4y+7
=(x^2+2x+1)+(4y^2-4y+1)+5
=(x+1)^2+(2y-1)^2+5
≥5
多项式 x^2+4y^2+2x-4y+7的最小值=5
x^2+4y^2+2x-4y+7
= x^2+2x+1+4y^2-4y+1+5
=(x+1)^2+(2y-1)^2+5
(x+1)^2+(2y-1)^2大于或等于0
所以最小值为5
x^2+4y^2+2x-4y+7
=(x^2+2x+1)+(4y^2-4y+1)+5
=(x+1)^2+(2y-1)^2+5
当x=-1,y=1/2时
x^2+4y^2+2x-4y+7最小值=5