已知F1、F2分别是双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点,以坐标原点O为圆心,OF1为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于a2时,双曲线的离心率为( )A. 2B. 3C. 62D. 2
问题描述:
已知F1、F2分别是双曲线
-x2 a2
=1(a>0,b>0)的左、右焦点,以坐标原点O为圆心,OF1为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于a2时,双曲线的离心率为( )y2 b2
A.
2
B.
3
C.
6
2
D. 2
答
设F1F2=2c,由题意知△F1F2P是直角三角形,
∴F1P2+F2P2=F1F22,
又根据曲线的定义得:
F1P-F2P=2a,
平方得:F1P2+F2P2-2F1P×F2P=4a2
从而得出F1F22-2F1P×F2P=4a2
∴F1P×F2P=2(c2-a2)
又当△PF1F2的面积等于a2
即
F1P×F2P=a21 2
2(c2-a2)=a2
∴c=
a,
2
∴双曲线的离心率e=
=c a
.
2
故选A.
答案解析:先设F1F2=2c,由题意知△F1F2P是直角三角形,进而在RT△PF1F2中结合双曲线的定义和△PF1F2的面积,进而根据双曲线的简单性质求得a,c之间的关系,则双曲线的离心率可得.
考试点:双曲线的简单性质.
知识点:本题主要考查了双曲线的简单性质.考查了学生综合分析问题和数形结合的思想的运用.属基础题.