(1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°. 求证:BE=CF. (2) 如图2,在

问题描述:

(1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°. 求证:BE=CF. (2) 如图2,在

证明:三角形ABE、BEO中∠AEB=∠BOE;∠ABE=∠EOB=∠AOF=90°,角角相等证明两三角形成等比
同样证明三角形BCF、BEO等比,所以三角形ABE、BCF也是等比三角形
因为AB=BC,根据角角边,求出三角形ABE、BCF全等,所以BE=CF

证明:∵ 四边形ABCD为正方形,
∴ AB=BC,∠ABC=∠BCD=90°,
∴ ∠EAB+∠AEB=90°.
∵ ∠EOB=∠AOF=90°,
∴ ∠FBC+∠AEB=90°,
∴ ∠EAB=∠FBC,
在△EBA和三角形FCB中,
∵∠EBA=∠FCB
BA=CB
∠EAB=∠FCB
∴ △ABE≌△BCF(ASA) ,
∴ BE=CF.