等差数列{an},{bn}的前n项和分别为Sn,Tn,且SnTn=3n−12n+3,则a8b8=______.

问题描述:

等差数列{an},{bn}的前n项和分别为Sn,Tn,且

Sn
Tn
=
3n−1
2n+3
,则
a8
b8
=______.

2a8
2b8
a1+a15
b1+b15

=
15
2
(a1+a15)
15
2
(b1+b15)

=
S15
T15
=
3×15−1
2×15+3
=
4
3

故答案为:
4
3

答案解析:
2a8
2b8
a1+a15
b1+b15
=
S15
T15
,由此能求出结果.
考试点:等差数列的前n项和.
知识点:本题考查两个等差数列的第8项的比值的求法,是基础题,解题时要注意等差数列的通项公式的合理运用.