如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M、N分别是A1B、B1C1的中点.(Ⅰ)求证:MN⊥平面A1BC;(Ⅱ)求直线BC1和平面A1BC所成角的大小.

问题描述:

如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M、N分别是A1B、B1C1的中点.

(Ⅰ)求证:MN⊥平面A1BC;
(Ⅱ)求直线BC1和平面A1BC所成角的大小.

证明:(Ⅰ)由已知BC⊥AC,BC⊥CC1,所以BC⊥平面ACC1A1.连接AC1,则BC⊥AC1.由已知,侧面ACC1A1是矩形,所以A1C⊥AC1.又BC∩A1C=C,所以AC1⊥平面A1BC.因为侧面ABB1A1是正方形,M是A1B的中点,连接AB1,则点M...
答案解析:(Ⅰ)由BC⊥AC,BC⊥CC1,则BC⊥平面ACC1A1,连接AC1,则BC⊥AC1.侧面ACC1A1是正方形,所以A1C⊥AC1.又BC∩A1C=C,根据线面垂直的判定定理可知AC1⊥平面A1BC,因为侧面ABB1A1是正方形,M是A1B的中点,连接AB1,则点M是AB1的中点,又点N是B1C1的中点,则MN是△AB1C1的中位线,所以MN∥AC1,从而MN⊥平面A1BC;
(Ⅱ)根据AC1⊥平面A1BC,设AC1与A1C相交于点D,连接BD,根据线面所成角的定义可知∠C1BD为直线BC1和平面A1BC所成角,设AC=BC=CC1=a,求出C1D,BC1,在Rt△BDC1中,求出∠C1BD,即可求出所求.
考试点:直线与平面垂直的判定;直线与平面所成的角.


知识点:本题主要考查了直线与平面垂直的判定,以及直线与平面所成角的度量,同时考查了化归与转化的数学思想方法,以及空间想象能力、运算求解能力和推理论证能力,属于中档题.