如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.

问题描述:

如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.
求证:(1)△ABC≌△AED;
(2)OB=OE.

证明:(1)∵∠BAD=∠EAC,
∴∠BAD+∠DAC=∠EAC+∠DAC,
即∠BAC=∠EAD.
在△ABC和△AED中

AB=AE
∠BAC=∠EAD
AC=AD

∴△ABC≌△AED(SAS).
(2)∵由(1)知△ABC≌△AED
∴∠ABC=∠AED,
∵AB=AE,
∴∠ABE=∠AEB,
∴∠ABE-∠ABC=∠AEB-∠AED,
∴∠OBE=∠OEB.
∴OB=OE.
答案解析:(1)由∠BAD=∠EAC可知∠BAC=∠EAD,所以有
AB=AE
∠BCA=∠EAD
AC=AD
可证△ABC≌△AED(SAS);
(2)由(1)知∠ABC=∠AED,AB=AE可知∠ABE=∠AEB,所以∠OBE=∠OEB,则OB=OE.
考试点:全等三角形的判定与性质.
知识点:本题考查三角形全等的性质和判定方法,也涉及到等腰三角形的性质,判定两个三角形全等的一般方法有:ASA、SSS、SAS、SSA、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.