解分式方程:1/(x2-2x-3) +2/(x2-x-6) +3/(x2+3x+2)=0

问题描述:

解分式方程:1/(x2-2x-3) +2/(x2-x-6) +3/(x2+3x+2)=0

原式可化为
1/(x+1)(x-3)+2/(x-3)((x+2) +3/(x+1)(x+2)=0
两边同乘以:(x+1)(x+2)(x-3)得:
(x+2)+2(x+1)+3(x-3)=0(x≠-1,x≠-2;x≠3)
6x-5=0
x=5/6