已知 xyx+y=2,xzx+z=3,yzy+z=4,求7x+5y-2z的值.

问题描述:

已知 

xy
x+y
=2,
xz
x+z
=3
yz
y+z
=4
,求7x+5y-2z的值.

xy
x+y
=2,
xz
x+z
=3
yz
y+z
=4

1
x
+
1
y
=
1
2
1
x
+
1
z
=
1
3
1
y
+
1
z
=
1
4

解得:
1
x
=
7
24
1
y
=
5
24
1
z
=
1
24

∴x=
24
7
,y=
24
5
,z=24,
∴原式=7×
24
7
+5×
24
5
-2×24
=24+24-48
=0.
答案解析:先根据题意得出
1
x
+
1
y
=
1
2
1
x
+
1
z
=
1
3
1
y
+
1
z
=
1
4
,求出
1
x
+
1
y
=
1
2
1
x
+
1
z
=
1
3
1
y
+
1
z
=
1
4
的值,进而得出x、y、z的值,再代入所求代数式进行计算即可.
考试点:对称式和轮换对称式.
知识点:本题考查的是对称式和轮换对称式,根据题意把原式化为
1
x
+
1
y
=
1
2
1
x
+
1
z
=
1
3
1
y
+
1
z
=
1
4
的形式是解答此题的关键.