求dy/dx=x+xy^/y+yx^满足初始条件y|(下面是x=0) =2的特解.^是2,2次方
问题描述:
求dy/dx=x+xy^/y+yx^满足初始条件y|(下面是x=0) =2的特解.
^是2,2次方
答
y = 根号[4 + 5 x^2]
没错的!
答
dy/dx = (x+xy²)/(y+yx²)(y+yx²)dy = (x+xy²)dxydy + yx²dy - xdx - xy²dx = 0ydy - xdx + 1/2 * (x²dy² - y²dx²) = 0dy² - dx² + x²dy² - ...