用换元法解方程X^4+X^2+1/X^4+1/X^2=4

问题描述:

用换元法解方程X^4+X^2+1/X^4+1/X^2=4

设x^2+1/x^2=t,x^4+1/x^4=t^2+2
所以t+t^2+2=4
t^2+t-2=0
t=2 or t=-1(舍)
1/x^2+x^2=2
x=1 or x=-1

x^4+1/x^4=(x^2+1/x^2)^2-2
设x^2+1/x^2=y
y^2-2+y-4=0
(y+3)(y-2)=0
y1=-3,y2=2
再分别讨论