P在e=5/4的双曲线X^2/a^2-Y^2/b^2=1上,F1F2是其焦点,且向量PF1*PF2=0若三角形F1PF2的面积为9求A+B 过程
问题描述:
P在e=5/4的双曲线X^2/a^2-Y^2/b^2=1上,F1F2是其焦点,且向量PF1*PF2=0若三角形F1PF2的面积为9求A+B 过程
答
e^2=(a^2+b^2)/a^2=25/16,∴b^2/a^2=9/16,∴b/a=3/4.①设|PF1|=5x0/4+a,|PF2|=5x0/4-a(焦半径公式),其中x0是点P的横坐标.因向量PF1*PF2=0,故三角形F1PF2的面积=(1/2)(25x0^2/16-a^2)=9,②由勾股定理,(5x0/4+a)^...