设函数f(x)=2x+1的绝对值- x-4的绝对值 ⑴解f(x)〉2 ⑵求函数y=f(x)的最小值

问题描述:

设函数f(x)=2x+1的绝对值- x-4的绝对值 ⑴解f(x)〉2 ⑵求函数y=f(x)的最小值

设函数f(x)=2x+1的绝对值- x-4的绝对值 ⑴解f(x)〉2 ⑵求函数y=f(x)的最小值
悬赏分:0 - 离问题结束还有 14 天 10 小时
那你就让给上楼把

解绝对不等式的基本思路:去掉绝对值符号转化为一般不等式,转化方法有(1)零点分段法(2)绝对值定义法(3)平方法;
⑴解f(x)>2
由于f(x)>2 ,f(x)=|2x+1|-|x-4|
|2x+1|-|x-4|>2 ,变换可得|x-4|-|2x+1|由零点分段法得:
1) x≥4且x-4-(2x+1)或 2)-1/2或 3)x≤-1/2时且-(x-4)-v(2x+1)解得:x≥4或5/3即:x∈(-∞,-9)∪(5/3,4)∪[4,+∞).