已知复数w满足w-4=(3-2w)i(i为虚数单位),z=5w+|w-2|,求一个以z为根的实系数一元二次方程.

问题描述:

已知复数w满足w-4=(3-2w)i(i为虚数单位),z=

5
w
+|w-2|,求一个以z为根的实系数一元二次方程.

[解法一]∵复数w满足w-4=(3-2w)i,∴w(1+2i)=4+3i,∴w(1+2i)(1-2i)=(4+3i)(1-2i),∴5w=10-5i,∴w=2-i.∴z=52−i+|2−i−2|=5(2+i)(2−i)(2+i)+1=2+i+1=3+i.若实系数一元二次方程有虚根z=3+i,则必...
答案解析:解法一:由复数w满足w-4=(3-2w)i(i为虚数单位),利用复数的运算法则可得w=2-i;再利用复数的运算法则可得z=3+i,再利用实数系数一元二次方程的虚根成对原理和根与系数的关系即可得出;
解法二:设w=a+b,(a,b∈Z),∴a+bi-4=3i-2ai+2b,根据复数相等即可得出w=2-i,以下同解法一.
考试点:实系数多项式虚根成对定理;复数相等的充要条件.


知识点:熟练掌握复数的运算法则、实数系数一元二次方程的虚根成对原理和根与系数的关系、复数相等是解题的关键.