已知△ABC的三条边分别为a、b、c,关于x的一元二次方程(a+c)x2-2bx+a-c=0有两个相等的实数根,试判断△ABC的形状并证明.
问题描述:
已知△ABC的三条边分别为a、b、c,关于x的一元二次方程(a+c)x2-2bx+a-c=0有两个相等的实数根,试判断△ABC的形状并证明.
答
∵关于x的一元二次方程(a+c)x2-2bx+a-c=0有两个相等的实数根,
∴△=(-2b)2-4(a+c)(a-c)=0,
整理得b2+c2=a2,
∴△ABC是以a为斜边的直角三角形.
答案解析:由跟的判别式△=(-2b)2-4(a+c)(a-c)=0,整理得出b2+c2=a2,由勾股定理逆定理得出△ABC的形状即可.
考试点:根的判别式;勾股定理的逆定理.
知识点:此题考查一元二次方程根的判别式和勾股定理逆定理的运用.