已知函数f(x)=cos(x+π/4)cos(x-π/4)+2tsinxcosx-sin(x+π/4)sin(x-π/4)1.当t=2时,求f(x)在[0,π/2]上的最大值和最小值2.若函数f(x)在区间(π/12,π/6)上时增函数,求实数t的取值范围
问题描述:
已知函数f(x)=cos(x+π/4)cos(x-π/4)+2tsinxcosx-sin(x+π/4)sin(x-π/4)
1.当t=2时,求f(x)在[0,π/2]上的最大值和最小值
2.若函数f(x)在区间(π/12,π/6)上时增函数,求实数t的取值范围
答