已知函数y=F(x)的定义域为R并对一切实数x都满足f(2+X)=f(2-X)证明函数y=f(x)的图像关于什么对称
问题描述:
已知函数y=F(x)的定义域为R并对一切实数x都满足f(2+X)=f(2-X)证明函数y=f(x)的图像关于什么对称
答
关于x=2对称,设任意一个点x1=a+2,对称(关于x=2)点是x2=2*2-x1=2-a
由上面的式子知道f(x1)=f(x2)
答
对称轴x=[(2+x)+(2-x)]/2=4/2=2.
答
要y=f(x)图像关于x=2对称,则要对于每个y=f(x)上的点P(x1,y1),都有它关于x=2对称点P'(x1',y1')在图像上
x1'=4-x1 y1'=y1
由于f(2+x)=f(2-x)
∴对于任意实数x,有f(x)=f(4-x)
∴y1'=y1=f(x1)=f(4-x1)=f(x1')
∴P'在图像上
∴函数y=f(x)的图像关于直线x=2对称