若多项式x^5+3x^4+8x^3+11x+m被x+2除后得的余数为1,则m的值为()

问题描述:

若多项式x^5+3x^4+8x^3+11x+m被x+2除后得的余数为1,则m的值为()

x^5+3x^4+8x^3+11x+m
=(x^5+2x^4)+(x^4+2x^3)+(6x^3+12x^2)-(12x^2+24x)+(35x+70)+(m-70)
=x4(x+2)+x^3(x+2)+6x^2(x+2)-12x(x+2)+35(x+2)+m-70
因此,要多项式能被x+2除余1,需要m-70=1
=>m=71