(1+根号2)^2001*(1-根号2)^2002的值是

问题描述:

(1+根号2)^2001*(1-根号2)^2002的值是

(1+根号2)^2001*(1-根号2)^2002
=(1+根号2)^2001*(1-根号2)^2001*(1-根号2)
=《(1+根号2)(1-根号2)》^2001*(1-根号2)
=(1-2)^2001*(1-根号2)
=-1*(1-根号2)
=根号2-1

(1+√2)^2001*(1-√2)^2002
=(1+√2)^2001*(1-√2)^2001*(1-√2)
=[(1+√2)*(1-√2)]^2001*(1-√2)
=(1-2)^2001*(1-√2)
=-(1-√2)
=√2-1