设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,ξ1,ξ2是分别属于λ1和λ2的特征向量证明:ξ1+ξ2不是A的特征向量.

问题描述:

设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,ξ1,ξ2是分别属于λ1和λ2的特征向量
证明:ξ1+ξ2不是A的特征向量.

证明: 反证.
假设 ξ1+ξ2 是A的属于特征值λ的特征向量
则 A(ξ1+ξ2) = λ(ξ1+ξ2)
而 A(ξ1+ξ2)=Aξ1+Aξ2=λ1ξ1+λ2ξ2
所以 (λ-λ1)ξ1+(λ-λ2)ξ2=0
由于A的属于不同特征值的特征向量线性无关'
所以 λ-λ1 = λ-λ2 = 0
所以 λ=λ1=λ2, 矛盾.