计算i+2i2+3i3+…+2000i2000=______.
问题描述:
计算i+2i2+3i3+…+2000i2000=______.
答
令S=i+2i2+3i3+…+2000i2000 ①,
则iS=i2+2i3+3i4…+1999i2000+2000i2001 ②,
①减去②且错位相减 可得 (1-i)S=i+i2+i3+…+i2000-2001i2001=
-2001i2001=i(1−i2000) 1−i
−2000i=0-2000i=-2000i,i(1−1) 1−i
∴S=
=−2000i 1−i
=−2000i(1+i) (1−i)(1+i)
=1000-1000i,−2000i+2000 2
故答案为:1000-1000i.
答案解析:利用虚数单位i的幂运算性质,用错位相减法进行数列求和.
考试点:复数代数形式的混合运算.
知识点:本题主要考查利用错位相减法进行数列求和,虚数单位i的幂运算性质.