计算i+2i2+3i3+…+2000i2000=______.

问题描述:

计算i+2i2+3i3+…+2000i2000=______.

令S=i+2i2+3i3+…+2000i2000 ①,
则iS=i2+2i3+3i4…+1999i2000+2000i2001 ②,
①减去②且错位相减 可得 (1-i)S=i+i2+i3+…+i2000-2001i2001=

i(1−i2000)
1−i
-2001i2001=
i(1−1)
1−i
−2000i
=0-2000i=-2000i,
∴S=
−2000i
1−i
−2000i(1+i)
(1−i)(1+i)
=
−2000i+2000
2
=1000-1000i,
故答案为:1000-1000i.
答案解析:利用虚数单位i的幂运算性质,用错位相减法进行数列求和.
考试点:复数代数形式的混合运算.
知识点:本题主要考查利用错位相减法进行数列求和,虚数单位i的幂运算性质.