已知关于x的方程x^2-2x-m=0无实根,判断方程:x²+2mx+1+2(m²-1)(x²+1)=0的根的情况

问题描述:

已知关于x的方程x^2-2x-m=0无实根,判断方程:x²+2mx+1+2(m²-1)(x²+1)=0的根的情况

x^2-2x-m=0
2^2+4mmx²+2mx+1+2(m²-1)(x²+1)=0
(2m²-1)x²+2mx+2(m²-1)=0
(2m)²-4*(2m²-1)*2(m²-1)=-16m^4+28m²-8=17/4-(4m²-7/2)²
因此,方程可能无实根,也可能有实根

deta=2^2-4*(-m)x²+2mx+1+2(m²-1)(x²+1)=0
(2m^2-2+1)x^2+2mx+2m^2-2+1=0
(2m^2-1)x^2+2mx+2m^2-1=0
m1 2m^2-1>1
deta=4m^2-4*(2m^2-1)^2=4(m-2m^2+1)(2m^2+m-1)
由于-2m^2+m+1在m>-(1/(-2*2)=1/4时是减的,xmm而2m^2+m-1 在m>-1/4时是增的。xm所以m0
所以:deta=4(m-2m^2+1)(2m^2+m-1)方程无解。

关于x的方程x^2-2x-m=0无实根.
则判别式=4+4m