若方程2x(kx-4)-x2+6=0没有实数根,则k的最小整数值是( )A. 2B. 1C. -1D. 不存在
问题描述:
若方程2x(kx-4)-x2+6=0没有实数根,则k的最小整数值是( )
A. 2
B. 1
C. -1
D. 不存在
答
原方程可化为:(2k-1)x2-8x+6=0,
当2k-1=0,即k=
时,原方程可化为:-8x+6=0,此时方程有实数根,故不合题意;1 2
当2k-1≠0,即k≠
时,1 2
∵方程没有实数根,
∴△=(-8)2-4×(2k-1)×6<0,
解得k>
,11 6
∴k的最小整数值是2.
故选A.
答案解析:先把原方程化为(2k-1)x2-8x+6=0的形式,由于2k-1的值不能确定,故应分2k-1=0与2k-1≠0两种情况进行讨论.
考试点:根的判别式.
知识点:本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac的关系是解答此题的关键.