化简(x^2-6x+9)/(2x-6)=

问题描述:

化简(x^2-6x+9)/(2x-6)=

原式=(x-3)^2/[2(x-3)]=(x-3)/2

原式
=[(2x-6)(x^2-6x+9)(x-2)]/[(x^2-4x+4)(4-2x)(x-3)]
=[(2x-6)/(x-3)][(x-2)/(x-2)^2][(x-3)^2/(x-3)]/(4-2x)
=2(x-3)/(x-2)(4-2x)]
=-(x-3)/(x-2)^2
选3,由于分子是3-3=0,所以分数值是0

(x-3)/2(x不等于0)