lim(n→∝){1/(1*3)+1/(3*5)+...1/[(2n-1)*(2n+1)]} 求极限
问题描述:
lim(n→∝){1/(1*3)+1/(3*5)+...1/[(2n-1)*(2n+1)]} 求极限
答
利用拆项法:数列的通项公式 1/[(2n-1)*(2n+1)] 可以拆项为 (1/2)*[1/(2n-1)-1/(2n+1)] 利用这个拆项法将极限化为 lim(n→∝){1/(1*3)+1/(3*5)+...1/[(2n-1)*(2n+1)]} = lim(n→∝)1/2{(1- 1/3)+(1/3-1/5)+...1/(2n-1)-1/(2n+1)]} = lim(n→∝)1/2{1-1/(2n+1)} = 1/2