若sin^3α-cos^3α≥cosα-sinα,0≤α<2π,则角α的取值范围是()A.[0,π\4]B.[π\4,π]C.[π\4,5π\4]D.[π\4,3π\2]
问题描述:
若sin^3α-cos^3α≥cosα-sinα,0≤α<2π,则角α的取值范围是()
A.[0,π\4]
B.[π\4,π]
C.[π\4,5π\4]
D.[π\4,3π\2]
答
若sin³α-cos³α≥cosα-sinα, 0≤α<2π,则角α的取值范围是()
(sinα-cosα)(sin²α+sinαcosα+cos²α)+(sinα-cosα)
=(sinα-cosα)(sin²α+sinαcosα+cos²α+1)
=(sinα-cosα)(sinαcosα+2)=(sinα-cosα)[(1/2)sin2α+2]≥0
由于-1≦sin2α≦1,-1/2≦(1/2)sin2α≦1/2;故0故必有sinα-cosα≥0,即sinα≥cosα,
故π/4≦x≦5π/4,选C.
答
选【C.[π\4,5π\4]】(sinα)^3-(cosα)^3=(sinα-cosα)((sinα)^2+sinα*cosα+(cosα)^2)=(sinα-cosα)(1+sinα*cosα)(sinα)^3-(cosα)^3-(cosα-sinα)=(sinα-cosα)(2+sinα*cosα)≥0∵2+sinα*cosα=2+si...