dx/(根号下1-2x)的积分得多少
问题描述:
dx/(根号下1-2x)的积分得多少
答
∫(1-2x)^(-1/2)dx
= -1/2 *∫(1-2x)^(-1/2)*d(1-2x)
= -∫d[(1-2x)^(1/2)]
= -(1-2x)^(1/2) + C
答
原式=-1/2*∫f(-2x)/√(1-2x)
=-1/2*∫(1-2x)^(1/2)f(1-2x)
=(-1/2)*[(1-2x)^(1/2+1)]/(1/2+1)+C
=-(1/3)*[(1-2x)^(3/2)]+C
=-1/[3(1-2x)√(1-2x)]+C