已知椭圆C:x2/a2+y2/b2=1的离心率为根号2/2,并且椭圆过点(1,1),过原点的直线l与椭圆C交于A、B两点,椭圆上一点M满足MA=MB.(1)求椭圆C的方程;(2)求1/OA2+1/OB2+2/OM2的值;(3)是否存在定圆,使得直线l绕原点转动时,AM恒与该定圆相切,若存在,求出圆的方程,若不存在,说明理由
问题描述:
已知椭圆C:x2/a2+y2/b2=1的离心率为根号2/2,并且椭圆过点(1,1),过原点的直线l与椭圆C交于A、B两点,椭圆上一点M满足MA=MB.(1)求椭圆C的方程;(2)求1/OA2+1/OB2+2/OM2的值;(3)是否存在定圆,使得直线l绕原点转动时,AM恒与该定圆相切,若存在,求出圆的方程,若不存在,说明理由
答