三角形中cos(A/2)^2 + cos(B/2)^2 + cos(C/2)^2 > 2

问题描述:

三角形中cos(A/2)^2 + cos(B/2)^2 + cos(C/2)^2 > 2

cos(A/2)^2 + cos(B/2)^2 + cos(C/2)^2= (1/2)(1+cosA) + (1/2)(1+cosB)c + (1/2)(1+cosC) = 3/2 + (1/2)(cosA + cosB + cosC)= 3/2 + (1/2)(cosA + cosB - cos(A+B))= 2 + cos[(A+B)/2)]{cos[(A-B)/2)] - cos[(A+B)...