不定积分换元法∫(x/1+x^2)dx=1/2∫(dx^2/1+x^2)=1/2∫(du/1+u)=1/2∫[d(u+1)/1+u]我想问的是∫(x/1+x^2)dx=1/2∫(dx^2/1+x^2)这一步怎么计算出来的,还有为什么1/2∫(du/1+u)=1/2∫[d(u+1)/1+u]中的du=d(u+1)?
问题描述:
不定积分换元法
∫(x/1+x^2)dx=1/2∫(dx^2/1+x^2)=1/2∫(du/1+u)=1/2∫[d(u+1)/1+u]
我想问的是∫(x/1+x^2)dx=1/2∫(dx^2/1+x^2)这一步怎么计算出来的,还有为什么1/2∫(du/1+u)=1/2∫[d(u+1)/1+u]中的du=d(u+1)?
答