二倍角的三角函数求证:sin2x/(1-cos2x)*sinx/(1+sinx)=tan(π/4-x/2)
问题描述:
二倍角的三角函数
求证:sin2x/(1-cos2x)*sinx/(1+sinx)=tan(π/4-x/2)
答
sin2x/(1-cos2x)*sinx/(1+sinx)
=2sinxcosx/2(sinx)^2*sinx/(1+sinx)
=cosx/sinx*sinx/(1+sinx)
=cosx/(1+sinx)
=sin(π/2-x)/[1+cos(π/2-x)]
=2sin(π/4-x/2)cos(π/4-x/2)/2(cos(π/4-x/2))^2
=sin(π/4-x/2)/cos(π/4-x/2)
=tan(π/4-x/2)
答
因为sin2x=2sinx*cosx 1-cos2x=2(sinx)^2sin2x/(1-cos2x)*sinx/(1+sinx)=cosx/(1+sinx)cosx=cos(x/2)^2-sin(x/2)^21+sinx=(cos(x/2)+sin(x/2))^2所以分子分母都除以cos(x/2)^2cosx/(1+sinx)=(1-tan(x/2)^2)/(1+tan(x...